Abstract

Traditional domain adaptation (DA) methods often encounter challenges with cross-domain feature extraction and the precise assessment of domain differences. To overcome these limitations, we introduce the Enhanced Sparse Filtering-Based Domain Adaptation (ESFBDA) method. This method distinguishes itself by enhancing sparse filtering (SF) with the integration of row-column normalization and a cosine penalty, specifically designed to minimize feature loss—a critical issue in existing DA techniques. Additionally, we employ Bootstrap resampling to refine domain distribution alignment, a novel step that boosts feature similarity and effectiveness in DA. This integrated approach ensures more accurate feature extraction, which is crucial for the classifier's fault detection capability. In our study, through two distinct experiments on Electro-Hydrostatic Actuator (EHA) internal leakage and bearing fault diagnosis, the ESFBDA method demonstrated remarkable accuracy, significantly surpassing traditional approaches and showcasing its robust applicability across varied diagnostic scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.