Abstract
In the absence of the labeled samples in a domain referred to as target domain, Domain Adaptation (DA) techniques come in handy. Generally, DA techniques assume there are available source domains that share similar predictive function with the target domain. Two core challenges of DA typically arise, variance that exists between source and target domains, and the inherent source hypothesis bias. In this paper, we first propose a Stability Transfer criterion for selecting relevant source domains with low variance. With this criterion, we introduce a TARget learning Assisted by Source Classifier Adaptation (TARASCA) method to address the two core challenges that have impeded the performances of DA techniques. To verify the robustness of TARASCA, extensive experimental studies are carried out with comparison to several state-of-the-art DA methods on the real-world Sentiment and Newsgroups datasets, where various settings for the class ratios of the source and target domains are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.