Abstract

The increasing pollution of water bodies, due to the constant release of highly toxic and non-biodegradable organic pollutants, requires innovative solutions for environmental remediation and wastewater treatment. In this study, the effectiveness of different Advanced Oxidation Processes (AOPs) for the purification of water contaminated with Rhodamine B (RhB) dye at a concentration of 5 mg/L were investigated and compared. Using the classical ozonation strategy as a benchmark treatment, the research showed over 99% degradation of RhB within 4 min in a laboratory-scale batch setup with a capacity of 0.2 L. In contrast, a “chemical-free” process exploiting ultrasound (US) technology achieved a 72% degradation rate within 60 min. Further experiments were conducted using a pilot-scale rotor-stator hydrodynamic cavitation (HC) reactor on a 15 L solution leading to 33% of RhB removal in the presence of hydrogen peroxide (H2O2) at 75 mg/L. However, the use of an innovative cavitational reactor, which hybridizes HC with cold plasma, showed remarkable efficiency and achieved 97% degradation of RhB in just 5 min when treating a 5 L solution at an inlet pressure of 20 bar in a loop configuration. In addition, a degradation rate of 58% was observed in a flow-through configuration, emphasising the robustness and scalability of the HC/electrical discharge (ED) plasma technology. These results underline the potential of hybrid HC/ED plasma technology as an intensified and scalable process for the purification of water, as it offers a catalyst- and oxidant-free protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.