Abstract
Herein, Typha angustifolia was used as a charcoal source and chemically modified with a strong oxidizing agent, potassium permanganate (KMnO4), to obtain modified Typha angustifolia (MTC). Then, the green, stable and efficient CMC/GG/MTC composite hydrogel was successfully prepared by compounding MTC with carboxymethyl cellulose (CMC) and guar gum (GG) by free radical polymerization. Various variables that influence adsorption performance were explored, and optimal adsorption conditions were determined. The maximum adsorption capacity calculated from the Langmuir isotherm model was 805.45, 772.52, and 598.28 mg g−1 for Cu2+, Co2+, and methylene blue (MB), respectively. The XPS results revealed that the main mechanism of removing pollutants by adsorbent is surface complexation and electrostatic attraction. After five adsorption-desorption cycles, the CMC/GG/MTC adsorbent still exhibited good adsorption and regeneration capacity. This study provides a low-cost, effective and simple method for preparation of hydrogels from modified biochar, which has excellent application potential in the removal of heavy metal ions and organic cationic dye contaminants from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.