Abstract
Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with green, stable and high-efficiency for adsorption of heavy metals, pectin β-cyclodextrin composite was successfully prepared and used for Zn2+ and Cu2+ adsorption for the first time. Various variables that influence the adsorption performance were explored, and the optimal adsorption conditions were determined. According to the pseudo-second-order kinetic model, the adsorption process of Zn2+ and Cu2+ by the adsorbent was mainly chemical adsorption. The adsorbent adsorption process was an exothermic and non-spontaneous process. According to the Langmuir isotherm model, the maximum adsorption capacity was 12.51 ± 0.33 and 24.98 ± 0.23 mg/g for Zn2+ and Cu2+, respectively. The FTIR, EDX and XPS results revealed that the main mechanisms of removing pollutants by adsorbent were ion exchange and coordination. In addition, electrostatic attraction and chelation were present in the adsorption process. After five adsorption desorption cycles, the pectin β-cyclodextrin composite adsorbent still exhibited adsorption and regeneration capabilities. This study provides a low-cost, effective and simple method for preparation of modified pectin, which has excellent application potential in the removal of heavy metal ions from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.