Abstract

Two of the most important areas in computational finance: Greeks and, respectively, calibration, are based on efficient and accurate computation of a large number of sensitivities. This paper gives an overview of adjoint and automatic differentiation (AD), also known as algorithmic differentiation, techniques to calculate these sensitivities. When compared to finite difference approximation, this approach can potentially reduce the computational cost by several orders of magnitude, with sensitivities accurate up to machine precision. AAD can be applied in conjunction with any analytical or numerical method (finite difference, Monte Carlo, etc) used for pricing, preserving the numerical properties of the original method. Examples and a literature survey are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.