Abstract
Abstract Given a computer model for the electrostatic potential in an L-shaped region with media of different dielectric permeabilities in two subregions, we are interested in the robustness of the simulation by identifying the rate of change of the potential with respect to a change in the permeabilities. Such sensitivity analyses, assessing the rate of change of certain model outputs implied by varying certain model inputs, can be carried out by computing the corresponding partial derivatives. In large-scale computational physics, the underlying computer model is typically available as a complicated computer code in a high-level programming language such as Fortran, C, or C++. To obtain accurate and efficient derivatives of functions given in this form, we use a technique called automatic or algorithmic differentiation. Unlike numerical differentiation based on divided differences, derivatives generated by automatic differentiation are free of truncation error. Here, the automatic differentiation tool Adifor is used to transform the given computer model—implemented with the general purpose finite element package SEPRAN—into a new computer code computing the derivatives of the electrostatic potential with respect to the dielectric permeabilities. In doing so, we automatically translate 400,000 lines of Fortran 77 into a new program consisting of 600,000 lines of Fortran 77. We compare our approach with a traditional approach based on numerical differentiation and quantify its advantages in terms of accuracy and computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.