Abstract
The paper describes the improvement on concurrent subspace optimization(CSSO) via automatic differentiation. CSSO is an efficient strategy to coupled multidisciplinary design optimization(MDO), wherein the original design problem is non-hierarchically decomposed into a set of smaller, more tractable subspaces. Key elements in CSSO are consisted of global sensitivity equation, subspace optimization, optimum sensitivity analysis, and coordination optimization problem that require frequent use of 1st order derivatives to obtain design sensitivity information. The current version of CSSO adopts automatic differentiation scheme to provide a robust sensitivity solution. Automatic differentiation has numerical effectiveness over finite difference schemes tat require the perturbed finite step size in design variable. ADIFOR(Automatic Differentiation In FORtran) is employed to evaluate sensitivities in the present work. The use of exact function derivatives facilitates to enhance the numerical accuracy during the iterative design process. The paper discusses how much the automatic differentiation based approach contributes design performance, compared with traditional all-in-one(non-decomposed) and finite difference based approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of The Korean Society of Mechanical Engineers A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.