Abstract
A Monte Carlo method is developed that performs adjoint-weighted tallies in continuous-energy k-eigenvalue calculations. Each contribution to a tally score is weighted by an estimate of the relative magnitude of the fundamental adjoint mode, by way of the iterated fission probability, at the phase-space location of the contribution. The method is designed around the power iteration method such that no additional random walks are necessary, resulting in a minimal increase in computational time. The method is implemented in the Monte Carlo N-Particle (MCNP) code. These adjoint-weighted tallies are used to calculate adjoint-weighted fluxes, point reactor kinetics parameters, and reactivity changes from first-order perturbation theory. The results are benchmarked against discrete ordinates calculations, experimental measurements, and direct Monte Carlo calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.