Abstract

Porous ceramic water filters (CWFs), produced by sintering a mixture of clay and a combustible material (such as woodchips), are often used in point-of-use water filtration systems that occlude microbes by size exclusion. They are also coated with colloidal silver, which serves as a microbial disinfectant. However, the adhesion of microbes to porous clay surfaces and colloidal silver coated clay surfaces has not been studied. This paper presents the results of atomic force microscopy (AFM) measurements of the adhesion force between Escherichia coli bacteria, colloidal silver, and porous clay-based ceramic surfaces. The adhesion of silver and copper nanoparticles is also studied in control experiments on these alternative disinfectant materials. The adhesive force between the wide range of possible bi-materials was measured using pull-off measurements during force microscopy. These were combined with measurements of AFM tip radii/substrate roughness that were incorporated into adhesion models to obtain the adhesion energies for the pair wise interaction. Of the three antimicrobial metals studied, the colloidal silver had the highest affinity for porous ceramic surface (125 ± 32 nN and ∼0.29 J/m2) while the silver nanoparticles had the highest affinity for E. coli bacteria (133 ± 21 nN and ∼0.39 J/m2). The implications of the results are then discussed for the design of ceramic water filter that can purify water by adsorption and size exclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.