Abstract
Particles deposited on an outdoor surface can be resuspended by wind gusts, become airborne, and be inhaled if small enough. If toxic or infectious, these particles may be dangerous for the populace health. It is therefore important to determine under which weather conditions a deposit of particle could be resuspended to implement the best response actions and plan clean-up. To this scope, one needs to consider the competing forces acting on the particle keeping it attached to the surface (gravity and adhesion) or trying to remove it (aerodynamic forces, i.e., lift and drag).This paper reviews the current understanding of the aforementioned forces for colloidal spherical particles and extends the existing theories to rod-shaped particles, representative for instance of Bacillus spores. In particular, for the adhesion force, the Derjaguin approximation was used and the adhesion force was computed from the radii of curvature of the particle and the surface at the point of closest approach. For the aerodynamic forces, we re-derived the equations for the drag and lift forces accounting for the shape of the particle. Both smooth and rough surfaces will be discussed, the former as idealized cases, the latter as more representative of real outdoor surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.