Abstract
In this article, we propose a class of additive transformation models for recurrent event data, which includes the additive rates model as a special case. The new models offer great flexibility in formulating the effects of covariates on the mean function of recurrent events. Estimating equation approaches are developed for the model parameters, and asymptotic properties of the resulting estimators are established. In addition, a model checking procedure is presented to assess the adequacy of the model. The finite sample performance of the proposed estimators is examined through simulation studies, and an application to a bladder cancer study is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.