Abstract

In this article, we propose a class of Box-Cox transformation models for recurrent event data, which includes the proportional means models as special cases. The new model offers great flexibility in formulating the effects of covariates on the mean functions of counting processes while leaving the stochastic structure completely unspecified. For the inference on the proposed models, we apply a profile pseudo-partial likelihood method to estimate the model parameters via estimating equation approaches and establish large sample properties of the estimators and examine its performance in moderate-sized samples through simulation studies. In addition, some graphical and numerical procedures are presented for model checking. An example of application on a set of multiple-infection data taken from a clinic study on chronic granulomatous disease (CGD) is also illustrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.