Abstract

Additive manufacturing (AM) using wire as an input material is currently in full swing, with very strong growth prospects thanks to the possibility of creating large parts, with high deposition rates, but also a low investment cost compared to the powder bed fusion machines. A versatile 3D printing device using a Direct Energy Deposition Wire-Laser (DED-W Laser) with Precitec Coaxprinter station to melt a metallic filler wire is developed to build titanium parts by optimizing the process parameters. The geometrical and metallurgical of produced parts are analyzed. In the literature, several authors agree to define wire feed speed, travel speed, and laser beam power as first-order process parameters governing laser-wire deposition. This study shows the relative importance of these parameters taking separately as well as the importance of their sequencing at the start of the process. Titanium deposit are obtained with powers never explored in bibliography (up to 5 kW), and wire feed speed up to 5 m.min-1 with a complete process repeatability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call