Abstract

Wire based plasma transferred arc (PTA)-laser hybrid additive manufacture has the potential to build large-scale metal components with high deposition rate and near-net shape. In this process, a single bead is the fundamental building block of each deposited component, and thus the bead shape control is essential for the deposition of different geometries. However, how to control the bead shape by manipulating various process parameters is still not understood. In this study, the effect of different process parameters, including laser power, energy distribution between the PTA and laser, wire feed speed, travel speed, and laser beam size on the deposition process and bead shape was investigated systematically. The results show that the optimum operating regime for the hybrid process is with the wire being fully melted by the PTA and the melt pool being controlled by the laser, which gives a good bead shape as well as a stable deposition process. The bead shape is significantly affected by the laser power and travel speed due to the large variation in energy input. The effect of wire feed speed is more complex with the bead width initially increasing to a maximum and then decreasing as the wire feed speed increases. The laser beam size has a minor effect on the bead shape, but a small beam size will result in an irregular bead appearance due to the unstable process caused by the high power density. In addition, a procedure for controlling the bead shape in the hybrid process was proposed, which provided a reference for selection of different process parameters to achieve required bead shapes. The feasibility of this proposed procedure was demonstrated by the two deposited multi-layer single-pass walls. • The bead shape control in wire based plasma arc-laser hybrid additive manufacture was investigated. • The effect of different process parameters on the deposition process and bead shape was obtained. • A procedure for selecting different process parameters for achieving required bead shapes was proposed. • The feasibility of the proposed procedure was demonstrated by the deposited multi-layer single-pass walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.