Abstract
During our research on the diversity of diatoms and green microalgae from Egypt, four new-to-science, newly recorded, and poorly known species were retrieved from different Egyptian habitats. The new benthic diatom species Halamphora shaabanii A.A. Saber, El-Sheekh, Levkov, H. Saber et Cantonati sp. nov., which could not be identified using the currently available literature, was described from the high-conductivity, oasis lake Abu Nuss in the El-Farafra Oasis, located in the Western Desert of Egypt, employing both light (LM) and scanning electron (SEM) microscopy observations. A detailed comparison of the biometrically distinctive traits, and ecological preferences, of this new diatom species revealed sufficient differentiations from its morphologically most closely related species: H. atacamana, H. caribaea, H. ectorii, H. gasseae, H. halophila, H. mosensis, H. poianensis, and H. vantushpaensis. Ecologically, Halamphora shaabanii can tolerate relatively high nutrients (N and P) and prefers saline inland environments with NaCl water types. The araphid diatom Pseudostaurosiropsis geocollegarum was observed in the epilithic diatom assemblages of the River Nile Damietta Branch and identified on the basis of LM and SEM. From an ecological standpoint, P. geocollegarum seems to prefer elevated nutrient concentrations (meso-eutraphentic species), reflecting different human influences on the freshwater River Nile Damietta Branch. Based on the available literature, this is the first documentation of this freshwater diatom species for Egypt, and the second record for the African continent. Two green motile microalgae, Chlamydomonas proboscigera and Gonium pectorale, were isolated and identified from the terrestrial biomes of the arid habitat “Wadi El-Atshan” in the Eastern Desert of Egypt. C. proboscigera is reported herein for the first time in the Egyptian algal flora, while G. pectorale is poorly documented in the available literature. In light of our findings, the Egyptian habitats, particularly the isolated desert ecosystems, are interesting biodiversity hotspots and have a richer algal microflora than earlier anticipated. Furthermore, more in-depth taxonomic studies, using a combined polyphasic approach, are needed not only to foster our knowledge of the Egyptian and African algal and cyanobacterial diversity and biogeography, but also to be further used in applied environmental sciences.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have