Abstract

This paper proposes an adaptive fractional-order sliding mode controller to control and stabilize a nonlinear uncertain disturbed robotic manipulator in fixed-time. Fractional calculus is used to construct a fractional-order sliding mode controller (FtNTSM) that suppresses chattering to help the robotic manipulator converge to equilibrium in a fixed-settling time based on fixed-time stability theory. Then, adaptive control is introduced and combined with FtNTSM to overcome the unknown system dynamics. The convergence time of the proposed fixed-time fractional-order sliding mode controller (AFtNTSM) is independent of beginning circumstances and can be precisely assessed, unlike the finite-time control approach. Finally, numerical simulations show that the adaptive fractional-order sliding mode controller outperforms finite-time sliding mode controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call