Abstract

This paper studies the adaptive finite-time fuzzy control issue associated with uncertain nonlinear systems that exhibit asymmetric constraints on the full state. A distinct function, constrained by nonlinear states, is designed to mitigate the excessive breach of these full-state boundaries. Unlike the standard barrier Lyapunov function (BLF) method, this approach solves symmetric and asymmetric full-state constraints without modifying the controller structure, and it does not require any additional assumptions about virtual control to be met. Simultaneously employing approximating functions using fuzzy logic systems and incorporating dynamic surface control technology integrated with a first-order filter, the unknown nonlinear functions emanating from the suggested controller strategy are estimated. Additionally, this approach addresses the prevalent problem of complexity explosion observed in conventional backstepping techniques. An adaptive finite-time fuzzy tracking control strategy is introduced, ensuring that all signals and tracking errors of the controlled system remain bounded in finite time. Finally, two simulation examples are given to illustrate the effectiveness of the proposed control scheme, confirming that all states remain within the predefined regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call