Abstract

An adaptive fuzzy finite-time control policy is developed for an uncertain $n$ -link robot with input saturation and time-varying output constraints. Compared with previous works, the introduced finite-time stability criterion is used for the tracking control of the robot. Furthermore, cot-type Barrier Lyapunov functions (BLFs) are introduced for guaranteeing output constraints, which can be considered as a substitution of other BLFs. A fuzzy approximation-based adaptive finite-time control scheme is constructed for stabilizing the robotic system. With Lyapunov theory, it has been proved that all the error signals are semi-global practical finite-time stable (SGPFS). At last, the effectiveness of the proposed scheme is verified by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.