Abstract

In this paper we adapt the Newton-Raphson and Potra-Pták algorithms by combining them with the modified Newton-Raphson method by inserting a condition. Problems of systems of sparse nonlinear equations are solved the algorithms implemented in Matlab® environment. In addition, the methods are adapted and applied to space trusses problems with geometric nonlinear behavior. Structures are discretized by the Finite Element Positional Method, and nonlinear responses are obtained in an incremental and iterative process using the Linear Arc-Length path-following technique. For the studied problems, the proposed algorithms had good computational performance reaching the solution with shorter processing time and fewer iterations until convergence to a given tolerance, when compared to the standard algorithms of the Newton-Raphson and Potra-Pták methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.