Abstract

Abstract We describe an interactive computer program to trace solutions of systems of nonlinear algebraic equations and illustrate its application to solve several difficult problems. Turning points and bifurcations are located and solution branches are identified and traced interactively. Of special interest is its application to study solutions of large, sparse systems of non-linear equations that result from the discretization of boundary value problems. Such systems arise in the description of physical, biological, and chemical phenomena. As an example, we show a model of urine formation in the mammalian kidney [13], where path-following in a subspace makes tracing the solution surface possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.