Abstract
Objective. Session-to-session nonstationarity is inherent in brain–computer interfaces based on electroencephalography. The objective of this paper is to quantify the mismatch between the training model and test data caused by nonstationarity and to adapt the model towards minimizing the mismatch. Approach. We employ a tensor model to estimate the mismatch in a semi-supervised manner, and the estimate is regularized in the discriminative objective function. Main results. The performance of the proposed adaptation method was evaluated on a dataset recorded from 16 subjects performing motor imagery tasks on different days. The classification results validated the advantage of the proposed method in comparison with other regularization-based or spatial filter adaptation approaches. Experimental results also showed that there is a significant correlation between the quantified mismatch and the classification accuracy. Significance. The proposed method approached the nonstationarity issue from the perspective of data-model mismatch, which is more direct than data variation measurement. The results also demonstrated that the proposed method is effective in enhancing the performance of the feature extraction model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have