Abstract
<p>The most numerous and malicious types of pathogens fungal diseases of plants cultural cereals – <em>Triticum аestivum </em><em>L</em><em>.</em>, <em>Secale cereale</em> <em>L</em><em>.</em> та <em>Triticum trispecies Shulind.</em> in conditions of anthropical ecosystem Central Right-bank Forest-Steppe are <em>Microdochium nivale (Fr.)</em>, <em>Blumeria graminis (DC.) f. sp. tritici Speer</em>, <em>Puccinia recondita Rob. ex. Desm f. sp. tritici</em> та <em>Tillitia caries (Tul.), Tillitia secalis (Korda, Kuhn) </em>etc.,<em> </em>manifestation of parasitism depends on genotypical, phenotypical, ontogenetical peculiarities plants, growing conditions. According to the results of years of research (2007–2016) highlighted group of plant formsthat are characterized by mono-, two- and polyfacet of resistance epiphytoparasites. That peculiarity owning heterogeneous or multilinearity plant forms (Аriivkа, Yuvivata 60, КС 1, Л 3-95, Л 4639/96), formed as a result of hybridization and repeated bekrossing and selected from hybrid populations by means individual and mass selections. The mechanism of plant genetic heterogeneity of the aforementioned forms due to the presence of multivariate phenetical markers – components of the spectra gliadin proteins (6А1, 6А4, 6В1, 6В3 etc.), as well as the phenotypical and ontogenetical their homogeneity, which increases the resistance of plant populations to adverse biotic stress environment. Among the studied assortment varietal plants tribe <em>Triticeae</em>, medium higher stability of some of them to the spectrum specified above epiphytoparasites caused by their variety individuals, which, mass and individual selection as a result of the reproduction, give rise to whole families – point populations (manifesting different firmness to one and the same species and races of pathogens, including with progressive race creative process), that is the basis of formed varieties – as megapopulation. Adaptive mechanisms of plant populations cultural crops to adverse biotic stress, particularly damaging pathogens are a number of biological peculiarities (molecular genetics, physiological, biochemical, morphological, ontogenetic, biocenotic), identification of plants which reflects the degree of their adaptive ability, ecological plasticity and sustainability. In general, the mechanisms resistance of plant tribe <em>Triticeae</em> to epiphytoparasites can distinguish by the following types: functional stability (sustainability, is caused by peculiarities of functional parameters of the plant), morphological tolerance (the ability of plants to resist damage without reducing productivity), ontogenetic evasion (sustainability, is caused by peculiarities ontogenetic of development of plants), photoperiodic sensitivity (retarded the development in autumn and late spring vegetation) and genetic heterogeneity (the presence of morphologically identical homozygous of lines differing by the spectrum of component proteins gliadin). Plant forms that possess mono- and polyfacet resistance to epiphytoparasites avoid parasite influence of fungi due to the mechanism ontogenetic evasion (Slavetne, Chaian, Vіvаtе Nоsіvskе, Pshenychne, Prydesnyanska n/k, Zoriana Nosivska etc.). The manifestations of mechanisms morphological tolerance of plant populations (Noshpа 100, Л 41/95, Bоrоtba, Slavetne) are medium- and high stem, woolly of eaves, stems, waxy coating, high index leaf, half procumbent and half vertical bush form, awned spike, glossy surface and gray color of leaves, stems.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.