Abstract
α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology. Some of these works postulate a physical interaction between αS and lipid droplets (LDs), but further clarity is needed, not least because typically exogenous αS and/or heterologous systems have been studied. Here, we investigated the effects of acute LD accumulation on endogenous wild-type αS in primary rat cortical neurons. To induce robust LD accumulation within hours, we inhibited the neuronal triacylglycerol hydrolase DDHD2, a phospholipase, using the compound KLH45. KLH45-induced LD accumulation did not affect total levels, phosphoserine-129 status, or solubility of αS, and no co-localization between LDs and αS was observed under these conditions. These findings suggest that a "second hit" and/or a specific LD lipid composition may be necessary for lipid excess to affect αS homeostasis. Our work thus contributes to the debate on αS structure and lipid interaction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have