Abstract
The primary objective was to assess the acute and 3-month performance of the modular antitachycardia pacing (ATP)-enabled leadless pacemaker (LP) and subcutaneous implantable cardioverter-defibrillator (S-ICD) system, particularly device-device communication and ATP delivery. Transvenous pacemakers and implantable cardioverter-defibrillators (ICDs) have considerable rates of lead complications. We examined the next step in multicomponent leadless cardiac rhythm management: feasibility ofpacing (including ATP) by a LP, commanded by an implanted S-ICD through wireless, intrabody, device-device communication. The combined modular cardiac rhythm management therapy system of the LP and S-ICD prototypes was evaluated in 3 animal models (ovine, porcine, and canine) both in acute and chronic (90 days) experiments. LP performance, S-ICD to LP communication, S-ICD and LP rhythm discrimination, and ATP delivery triggered by the S-ICD were tested. The LP and S-ICD were successfully implanted in 98% of the animals (39 of 40). Of the 39 animals, 23 were followed up for 90 days post-implant. LP performance was adequate and exhibited appropriate VVI behavior during the90 days of follow-up in all tested animals. Unidirectional communication between the S-ICD and LP was successful in 99% (398 of 401) of attempts, resulting in 100% ATP delivery by the LP (10 beats at 81% of the coupling interval). Adequate S-ICD sensing was observed during normal sinus rhythm, LP pacing, and ventricular tachycardia/ventricular fibrillation. This study presents the preclinical acute and chronic performance of the combined function of an ATP-enabled LP and S-ICD. Appropriate VVI functionality, successful wireless device-device communication, and ATP delivery were demonstrated by the LP. Clinical studies on safety and performance are needed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have