Abstract

A "partial" rodent model for schizophrenia has been used to characterize the regulation of hippocampal genes in response to amygdalar activation. At 96 h after the administration of picrotoxin into the basolateral nucleus, we have observed an increase in the expression of genes associated with 18 different monoamine (ie adrenergic alpha 1, alpha 2 and beta 2, serotonergic 5HT5b and 5HT6, dopamine D4 and muscarinic m1, m2 and m3) and peptide (CCK A and B, angiotensin 1A, mu and kappa opiate, FSH, TSH, LH, GNRH, and neuropeptide Y) G-protein coupled receptors (GPCRs). These latter receptors are associated with three different G protein signaling pathways (Gq, Gs, and Gi) in which significant changes in gene expression were also noted for adenylate cyclase (AC4), phosphodiesterase (PDE4D), protein kinase A (PKA), and protein kinase C (PKC). Quantitative RT-PCR was used to validate the results and demonstrated that there were predictable increases of three GPCRs selected for this analysis, including the dopamine D4, alpha 1b, and CCK-B receptors. Eight out of the nine monoamine receptors showing these changes have moderate to high affinity for the atypical antipsychotic, clozapine. Taken together, these results suggest that amygdalar activation may play a role in the pathophysiology and treatment of psychosis by regulating the activity of multiple GPCR and metabolic pathways in hippocampal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.