Abstract

Neuronal Ca2+ channels are key transducers coupling excitability to cellular function. As such, they are tightly regulated by multiple G protein-signaling pathways that finely tune their activity. In addition to fast, direct G(beta)gamma modulation of Ca2+ channels, a slower Galpha(q/11)-mediated mechanism has remained enigmatic despite intensive study. Recent work suggests that membrane phosphoinositides are crucial determinants of Ca2+ channel activity. Here, we discuss their role in Ca2+ channel modulation and the leading theories that seek to elucidate the underlying molecular details of the so-called "mysterious" G(q/11)-mediated signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call