Abstract
BackgroundThe G protein-coupled receptor (GPCR) signaling pathway plays an essential role in signal transmission and response to external stimuli in mammalian cells. Protein components of this pathway have been characterized in plants and simpler eukaryotes such as yeast, but their presence and role in unicellular photosynthetic eukaryotes have not been determined. We use a comparative genomics approach using whole genome sequences and gene expression libraries of four diatoms (Pseudo-nitzschia multiseries, Thalassiosira pseudonana, Phaeodactylum tricornutum and Fragilariopsis cylindrus) to search for evidence of GPCR signaling pathway proteins that share sequence conservation to known GPCR pathway proteins.ResultsThe majority of the core components of GPCR signaling were well conserved in all four diatoms, with protein sequence similarity to GPCRs, human G protein α- and β-subunits and downstream effectors. There was evidence for the Gγ-subunit and thus a full heterotrimeric G protein only in T. pseudonana. Phylogenetic analysis of putative diatom GPCRs indicated similarity but deep divergence to the class C GPCRs, with branches basal to the GABAB receptor subfamily. The extracellular and intracellular regions of these putative diatom GPCR sequences exhibited large variation in sequence length, and seven of these sequences contained the necessary ligand binding domain for class C GPCR activation. Transcriptional data indicated that a number of the putative GPCR sequences are expressed in diatoms under various stress conditions in culture, and that many of the GPCR-activated signaling proteins, including the G protein, are also expressed.ConclusionsThe presence of sequences in all four diatoms that code for the proteins required for a functional mammalian GPCR pathway highlights the highly conserved nature of this pathway and suggests a complex signaling machinery related to environmental perception and response in these unicellular organisms. The lack of evidence for some GPCR pathway proteins in one or more of the diatoms, such as the Gγ-subunit, may be due to differences in genome completeness and genome coverage for the four diatoms. The high divergence of putative diatom GPCR sequences to known class C GPCRs suggests these sequences may represent another, potentially ancestral, subfamily of class C GPCRs.
Highlights
The G protein-coupled receptor (GPCR) signaling pathway plays an essential role in signal transmission and response to external stimuli in mammalian cells
GPCR signaling pathway analysis Using the analysis framework shown in Figure 1, we first searched the diatom genomes for evidence of GPCR signaling pathway proteins, many of which are expected to be highly conserved across eukaryotes (Table 1)
In summary, using a cross-species comparative genomics approach this study has found conservation at the amino acid level of many of the core proteins involved in the mammalian GPCR signaling pathway in diatoms
Summary
The G protein-coupled receptor (GPCR) signaling pathway plays an essential role in signal transmission and response to external stimuli in mammalian cells. GPCR activation leads to the exchange of GDP for GTP by a G protein, and G protein subunits interact and regulate effector molecules (e.g. calcium, adenylyl cyclase, phospholipase C, phosphodiesterases, protein kinases), activating further downstream signaling pathways such as the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase (PI3K)-Akt and NF-kappaB pathways that activate transcription factors that affect gene expression and regulation [6,7]. Many of these scaffolding and signaling proteins mediate signal transduction in other intracellular pathways in eukaryotes and are highly conserved. Numerous endocrine and sensory-related diseases are associated with GPCR mutations in humans [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.