Abstract

Understanding the role of self-propulsion on the conformational properties of active filamentous objects has relevance in biology. In this work, we consider a flexible bead-spring model for active polymers with both attractive and repulsive interactions among the non-bonded monomers. The activity for each monomer works along its intrinsic direction of self-propulsion which changes diffusively with time. We study its kinetics in the overdamped limit, following quenching from good to poor solvent conditions. We observe that with low activities, though the kinetic pathways remain similar, the scaling exponent for the relaxation time of globule formation becomes smaller than that for the case with no activity. Interestingly, for higher activities when self-propulsion dominates over interaction energy, the polymer conformation becomes extended coil-like. There, in the steady state, the variation of the spatial extension of the polymer, measured via its gyration radius, shows two completely different scaling regimes: the corresponding Flory exponent ν changes from 1/3 to 3/5 similar to a transition of the polymer from a globular state to a self-avoiding walk. This can be explained by an interplay among the three energy scales present in the system, viz., the "ballistic", thermal, and interaction energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call