Abstract
In previous work we developed dynamic data driven simulation (DDDS) that assimilates real time sensor data using Sequential Monte Carlo (SMC) methods. This paper builds on previous work and presents a framework that adds a real time behavior pattern detection layer on top of data assimilation for dynamic data driven simulation. The real time behavior pattern detection layer uses Hidden Markov Model (HMM) to detect the behavior patterns of a system in real time and uses the detected behavior pattern to inform the simulation model for more accurate simulation. We apply the proposed framework to a smart environment application and discuss how to recognize behavior pattern from spatial-temporal sensor data using Coupled HMM (CHMM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.