Abstract

We propose a coupled hidden Markov model (CHMM) approach to video-realistic speech animation, which realizes realistic facial animations driven by speaker independent continuous speech. Different from hidden Markov model (HMM)-based animation approaches that use a single-state chain, we use CHMMs to explicitly model the subtle characteristics of audio–visual speech, e.g., the asynchrony, temporal dependency (synchrony), and different speech classes between the two modalities. We derive an expectation maximization (EM)-based A/V conversion algorithm for the CHMMs, which converts acoustic speech into decent facial animation parameters. We also present a video-realistic speech animation system. The system transforms the facial animation parameters to a mouth animation sequence, refines the animation with a performance refinement process, and finally stitches the animated mouth with a background facial sequence seamlessly. We have compared the animation performance of the CHMM with the HMMs, the multi-stream HMMs and the factorial HMMs both objectively and subjectively. Results show that the CHMMs achieve superior animation performance. The ph- vi-CHMM system, which adopts different state variables (phoneme states and viseme states) in the audio and visual modalities, performs the best. The proposed approach indicates that explicitly modelling audio–visual speech is promising for speech animation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.