Abstract

While multifidelity modeling provides a cost-effective way to conduct uncertainty quantification with computationally expensive models, much greater efficiency can be achieved by adaptively deciding the number of required high-fidelity (HF) simulations, depending on the type and complexity of the problem and the desired accuracy in the results. We propose a framework for active learning with multifidelity modeling emphasizing the efficient estimation of rare events. Our framework works by fusing a low-fidelity (LF) prediction with an HF-inferred correction, filtering the corrected LF prediction to decide whether to call the high-fidelity model, and for enhanced subsequent accuracy, adapting the correction for the LF prediction after every HF model call. The framework does not make any assumptions as to the LF model type or its correlations with the HF model. In addition, for improved robustness when estimating smaller failure probabilities, we propose using dynamic active learning functions that decide when to call the HF model. We demonstrate our framework using several academic case studies (including some high-dimensional problems) and two finite element model case studies: estimating Navier-Stokes velocities using the Stokes approximation and estimating stresses in a transversely isotropic model subjected to displacements via a coarsely meshed isotropic model. Across these case studies, not only did the proposed framework estimate the failure probabilities accurately, but compared with either Monte Carlo or a standard variance reduction method, it also required only a small fraction of the calls to the HF model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.