Abstract

Phoretic colloids self-propel thanks to surface flows generated in response to surface gradients (thermal, electrical, or chemical), that are self-induced and/or generated by other particles. Here we present a scalable and versatile framework to model chemical and hydrodynamic interactions in large suspensions of arbitrarily shaped phoretic particles, accounting for thermal fluctuations at all Damkholer numbers. Our approach, inspired by the Boundary Element Method (BEM), employs second-layer formulations, regularized kernels and a grid optimization strategy to solve the coupled Laplace-Stokes equations with reasonable accuracy at a fraction of the computational cost associated with BEM. As demonstrated by our large-scale simulations, the capabilities of our method enable the exploration of new physical phenomena that, to our knowledge, have not been previously addressed by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.