Abstract
ABSTRACTComputational simulation models with different fidelity have been widely used in complex systems design. However, running the high-fidelity (HF) simulation models tends to be very time-consuming, while incorporating low-fidelity (LF), inexpensive models into the design process may result in inaccurate design alternatives. To make a trade-off between high accuracy and low expense, an active learning variable-fidelity (VF) metamodelling approach aiming to integrate information from both LF and HF models is proposed. In the proposed VF metamodelling approach, a model fusion technology based on ensemble of metamodels is employed to map the difference between the HF and LF models. Furthermore, an active learning strategy based on a generalised objective-oriented sequential sampling strategy is introduced to make full use of the already-acquired information of difference characteristics between the HF and LF models. Several numerical and engineering cases verify the applicability of the proposed VF metamodelling approach. Different types of test cases, sample sizes, and metamodel performance evaluation measures including accuracy and robustness are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.