Abstract

Biomass waste-derived engineered biochar for CO2 capture presents a viable route for climate change mitigation and sustainable waste management. However, optimally synthesizing them for enhanced performance is time- and labor-intensive. To address these issues, we devise an active learning strategy to guide and expedite their synthesis with improved CO2 adsorption capacities. Our framework learns from experimental data and recommends optimal synthesis parameters, aiming to maximize the narrow micropore volume of engineered biochar, which exhibits a linear correlation with its CO2 adsorption capacity. We experimentally validate the active learning predictions, and these data are iteratively leveraged for subsequent model training and revalidation, thereby establishing a closed loop. Over three active learning cycles, we synthesized 16 property-specific engineered biochar samples such that the CO2 uptake nearly doubled by the final round. We demonstrate a data-driven workflow to accelerate the development of high-performance engineered biochar with enhanced CO2 uptake and broader applications as a functional material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.