Abstract
A steady stagnation-point flow of an incompressible Maxwell fluid towards a linearly stretching sheet with active and passive controls of nanoparticles is studied numerically. The momentum equation of the Maxwell nanofluid is inserted with an external velocity term as a result of the flow approaches the stagnation point. Conventional energy equation is modified by incorporation of nanofluid Brownian and thermophoresis effects. The condition of zero normal flux of nanoparticles at the stretching surface is defined to impulse the particles away from the surface in combination with nonzero normal flux condition. A hydrodynamic slip velocity is also added to the initial condition as a component of the entrenched stretching velocity. The governing partial differential equations are then reduced into a system of ordinary differential equations by using similarity transformation. A classical shooting method is applied to solve the nonlinear coupled differential equations. The velocity, temperature and nanoparticle volume fraction profiles together with the reduced skin friction coefficient, Nusselt number and Sherwood number are graphically presented to visualize the effects of particular parameters. Temperature distributions in passive control model are consistently lower than in the active control model. The magnitude of the reduced skin friction coefficient, Nusselt number and Sherwood number decrease as the hydrodynamic slip parameter increases while the Brownian parameter has negligible effect on the reduced heat transfer rate when nanoparticles are passively controlled at the surface. It is also found that the stagnation parameter contributes better heat transfer performance of the nanofluid under both active and passive controls of normal mass flux.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have