Abstract

Cerebellar Purkinje cells can learn to respond to a conditioned stimulus with an adaptively timed pause in firing. This response was usually ascribed to long-term depression of parallel fiber to Purkinje cell synapses but has recently been shown to be due to a previously unknown form of learning involving an intrinsic cellular timing mechanism. Here, we investigate how these responses are elicited. They are resistant to blockade of GABAergic inhibition, suggesting that they are caused by glutamate release rather than by a changed balance between GABA and glutamate. We show that the responses are abolished by antagonists of the mGlu7 receptor but not significantly affected by other glutamate antagonists. These results support the existence of a distinct learning mechanism, different from changes in synaptic strength. They also demonstrate in vivo post-synaptic inhibition mediated by glutamate and show that the mGlu7 receptor is involved in activating intrinsic temporal memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.