Abstract
The role of metabotropic l-glutamate (mGlu) receptors in supralinear Ca(2+) signaling was investigated in cultured hippocampal cells using Ca(2+) imaging techniques and whole-cell voltage-clamp recording. In neurons, but not glia, global supralinear Ca(2+) release from intracellular stores was observed when the mGlu receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) was combined with elevated extracellular K(+) levels (10.8 mm), moderate depolarization (15-30 mV), or NMDA (3 micrometer). There was a delay (2-8 min) before the stores were fully charged, and the enhancement persisted for a short period (up to 10 min) after removal of the store-loading stimulus. Studies with the mGlu receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine demonstrated that these effects were mediated by activation of the mGlu(5) receptor subtype. The L-type voltage-gated Ca(2+) channel antagonist nifedipine (10 micrometer) substantially reduced responses to DHPG obtained in the presence of elevated extracellular K(+) but not NMDA. This suggests that the Ca(2+) that is required to load the stores can enter either through L-type voltage-gated Ca(2+) channels or directly through NMDA receptors. The findings that both depolarization and NMDA receptor activation can facilitate mGlu receptor Ca(2+) signaling adds considerable flexibility to the processes that underlie activity-dependent changes in synaptic strength. In particular, a temporal separation between the store-loading stimulus and the activation of mGlu receptors could be used as a recency detector in neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.