Abstract
The nucleation and growth of indium on a vicinal Si(100)-(2×1) surface at high temperature by femtosecond pulsed laser deposition was investigated by in situ reflection high energy electron diffraction (RHEED). RHEED intensity relaxation was observed for the first ∼2 ML during the growth of In(4×3) by step flow. From the temperature dependence of the rate of relaxation, an activation energy of 1.4±0.2 eV of surface diffusion was determined. The results indicate that indium small clusters diffused to terrace step edges with a diffusion frequency constant of (1.0±0.1)×1011 s−1. The RHEED specular beam split peak spacing, which is characteristic of a vicinal surface, was analyzed with the growth temperature to obtain the average terrace width. Gradual reduction in the terrace width during growth of In(4×3) was observed with In coverage and is attributed to the detachment of In atoms from terrace edges. At a substrate temperature of 405 °C, the average terrace width decreased from 61±10 Å, which corresponds to the vicinal Si(100) surface, to an equilibrium value of 45±7 Å after deposition of ∼23 ML. Further In coverage showed a transition of the RHEED pattern from (4×3) to (1×1) and the growth of rounded In islands (average height of ∼1 nm and width of ∼25 nm), as examined by ex situ atomic force microscopy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have