Abstract

±Abstract. By applying the new quantum mechanics and relativistic mathematical model, proposed by Muñoz-Andrade, on the experimental results reported previously by Aghaie-khafri and Adhami [5], the true activation energy for hot deformation of 15-5 PH stainless steel is obtained over the temperature range of 900-1150°C and strain rates varying between 0.001 and 0.5s-1. It is interesting to contrast the results of this theoretical work with the main results of the apparent activation energy obtained for the same data, but applying the common methodology. It is shown that the true activation energy increased as the hot deformation is increased. Moreover, the true activation energy decreased as the strain rate is increased. The mean value of the true activation energy (289 kJ/mol) at high strain rate, ξ=0.5s-1, for dynamic recrystallization over the temperature range of 900-1150°C is in a closed agreement with the value of activation energy for self-diffusion in γ iron (280 kJ/mol) in dissimilarity of the result of the apparent activation energy (49221 kJ/mol) obtained beforehand by Aghaie-khafri and Adhami [5]. The results obtained in this work by the quantum mechanics and relativistic mathematical model are widely satisfactory; because essentially they are over the crucial limitations of the common methodology to obtain the activation energy at each thermo-mechanical metalworking condition. Keywords: Activation Energy, Hot Deformation, Dynamic Recrystallization, Quantum Mechanics, Special Relativity Theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.