Abstract
Hot compression tests were conducted on Ti-13V-11Cr-3Al beta-Ti alloy in the temperature range of 1203 K to 1353 K (930 °C to 1080 °C) and at strain rates between 0.001 and 1 s−1 The stress–strain curves showed pronounced yield point phenomena at high strain rates and low temperatures. The yield point elongation and flow stresses at the upper and lower yield points were related to the Zener–Hollomon parameter. It was found that dynamic recovery at low strain rates and dynamic recrystallization at high strain rates were the controlling mechanisms of microstructural evolution. The results also showed that strain rate had a stronger influence on the hot deformation behavior than temperature. The microstructural observations and constitutive analysis of flow stress data supported the change in the hot deformation behavior of the studied alloy varies with strain rate. For various applied strain rates, the activation energy for hot deformation was calculated in range of 199.5 to 361.7 kJ/mol. At low strain rates (0.001 and 0.01 s−1), the value of activation energy was very close to the activation energy for the diffusion of V, Cr, and Al in beta titanium. The higher value of activation energy for deformation at high strain rates (0.1 and 1 s−1) was attributed to the accumulation of dislocations and the tendency to initiate dynamic recrystallization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.