Abstract
In this research, soccer task is investigated among the numerous tasks of deep reinforcement learning. The soccer task requires cooperative behavior. However, it is difficult for the agents to acquire the behavior, because a reward is sparsely given. Moreover, the behaviors of the allies and opponents must be considered by the agents. In addition, in the soccer task, if the agents attempt to acquire high-level cooperative behavior from low-level movements, such as ball kicking, a huge amount of time will be needed to learn a model. In this research, we conduct experiments in which reward shaping is incorporated into deep reinforcement learning. This enables the agents to efficiently acquire cooperative behavior from low-level movements in a soccer task. The findings of this research indicate that reward shaping with a designer's domain knowledge positively influences the agent's attempt to acquire cooperative behavior from low-level movements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.