Abstract
In order to satisfy the requirements of precise components with tidiness, low power and high stability in the field of biological engineering, medical equipment and semiconductors etc. a pre-stress acoustic transport prototype without horn was proposed in this paper. The mechanism of levitation and transport which is driven by orthogonal waves was revealed by the analysis of waveform and squeeze film characteristics in high-frequency exciting condition; also, the electric, solid and acoustic coupled finite element method (FEM) was established to investigate the effect of pre-stress and acoustic pressure distribution in the near field. The levitation and driving capacity of near field acoustic levitation (NFAL) transport platform without horns can be proved in this experiment and further to achieve the goal of parameters optimization. The theoretical and experimental results indicate that the pre-stress has a significant effect on resonant frequency and levitating stability, the pre-stress are determined by the DC voltage offset which is related to the system working point so that we cannot increase the offset and exciting voltage unlimitedly to improve the stability. At the same time, the calculated pressure distribution of acoustic radiation can generally reflect the regional bearing capacity in near and far field for levitation. These achievements can partly solve the problem of accuracy design of prototype and thickness of gas film, supporting for accuracy close loop control of levitating height.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have