Abstract
In this study, we experimentally and theoretically investigated acoustic band gap control with diffraction modes in two-dimensional (2D) phononic crystals (PCs) consisting of periodic arrays of stainless steel (SS) rods immersed in water. We could classify the acoustic band gaps into two types with diffraction modes in the reflection region, and control the center frequencies of the band gaps by varying the vertical lattice constants. Pressure transmission coefficients and acoustic pressure fields were calculated using the finite element method (FEM), to classify and control the acoustic band gaps. As the vertical lattice constants were varied, the center frequencies of the band gaps, where only normal reflection occurred, were almost constant while those of the band gaps, where additional reflected waves with different propagation directions occurred, decreased with increasing the vertical lattice constants. This work can be used to manipulate acoustic band gap adding, splitting, and shifting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.