Abstract
The acid-forming potential of lead/zinc (Pb/Zn) mine tailings at Lechang City of Guangdong Province was studied using both net acid generation (NAG) and acid–base accounting (ABA) methods. The pyritic and total sulfur contents of the tailings were 12.6% and 18.7%, respectively. The mean acid neutralization capacity (ANC) was 63.5 kg H 2SO 4/t while three oxidized tailings samples had an ANC less than zero. The NAG and net acid production potential (NAPP) values were 220 and 326 kg H 2SO 4/t, and both the NAG and NAPP results indicated that the tailings had a high acid-forming potential. NAG was more accurate than NAPP in predicting acid-forming potential of the tailings due to uncompleted oxidization of pyritic sulfur. Analysis of samples from two profile tests indicated that acidification mainly occurred at the surface (0–20 cm) and had little effects at deep layer of the tailings. Total concentrations of Pb, Zn, Cu, and Cd were increased greatly with depth at the acidified tailings profile, while heavy metal concentrations at different depths of nonacidified tailings profile were similar. The results indicated that depletion of heavy metals at the acidified surface was due to acidification. The diethylenetetramine pentaacetic acid (DTPA)-extractable Pb, Zn, Cu, and Cd concentrations of acidified tailings surface (0–20 cm) were significantly higher than those of nonacidified tailings, which further revealed that acidification enhanced the mobility of heavy metals in the tailings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.