Abstract

AbstractThe dissociation, capacity, swelling, and water content of crosslinked methacrylic acid—methyl methacrylate resins have been measured. Resins were prepared with different degrees of crosslinking for the same carboxylate content, and vice versa. The ionic strength of the external solution was also varied, and the behavior of commercial resins compared with that of the laboratory resins. Potentiometric titration curves were obtained, and curves were also obtained by back‐titration of the salt form of the resins with acid. The capacities showed that almost all carboxyl groups are accessible in resins containing 2.5% or 4.0% divinylbenzene, but not in those containing 8% or 12%. For these highly crosslinked resins the back‐titration curves differed from the forward curves. Apparent dissociation constants pK′a = pH + n log [(1 − α)/α] decreased with increased ionic strength, increased with increased crosslinking, and showed no trend with carboxylate content. Swelling is decreased by increased salt concentration, particularly for lightly crosslinked resins. Maximum swelling is achieved at about 80% dissociation. The reciprocal of the swollen volume is proportional to the per cent of divinylbenzene. Commercial resins showed much lower swelling than laboratory prepared resins ostensibly having the same composition. The Gibbs‐Donnan theory of resin dissociation was applied to calculate the intrinsic dissociation constant (pK′0). Assuming a model of randomly kinked chains dissolved in the sorbed solution, good agreement with the expected value of 4.85 was found (calcd. pK′0 = 4.81 = 0.14), except for the most highly crosslinked resins. For polyampholyte resins, agreement was found by using a model having a uniform potential distribution throughout the resin (pK′0 = 4.9).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.