Abstract

ObjectiveAcetaldehyde dehydrogenase 2 (ALDH2) plays an important part in neuroprotection; however, its effect on sepsis-induced brain injury is nuclear. Our aim is to investigate the potential effect and mechanism of ALDH2 in this condition. MethodsWe established an animal model using cecal ligation and perforation (CLP). Twenty-four rats were divided into sham group (n = 6), CLP group (n = 6), CLP + Alda-1 group (n = 6) and CLP + Cyanamide (CYA) group (n = 6). Vital signs were monitored, and arterial blood gas analysis, hippocampal histological staining and ALDH2 activity analysis were conducted. Western blot analysis and enzyme-linked immunosorbent assays were also carried out. Lipopolysaccharide (LPS)-treated HT22 cells were employed as an in vitro model of sepsis-induced brain injury, with and without pretreatment with Alda-1 or CYA, to further examine the potential mechanisms. Real-time quantitative polymerase chain reaction and western blot were used to determine the levels of pyrin domain-containing 3 (NLRP3) inflammasome. ResultsWe found hippocampal cell injury in the CLP group (p < 0.05), with decreased ALDH2 activity (p < 0.05) and suspected overexpression of NLRP3/caspase-1 axis (p < 0.05). In the group pretreated with Alda-1, there were increased ALDH2 activity (p < 0.05), decreased hippocampal cell damage (p < 0.05), and reduced protein levels of NLRP3, apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), cleaved caspase-1 and Gasdermin D (GSDMD) (p < 0.05). The levels of interleukin 18 (IL-18) and interleukin 1β (IL-1β) were also reduced (p < 0.05). In the group pretreated with CYA, ALDH2 activity was further declined, the cell injury grade increased, and the elevated levels of pyroptosis-related proteins aggravated (p < 0.05). LPS treatment decreased the cell viability and ALDH2 activity of the HT22 cells (p < 0.05), along with increased mRNA levels of the NLRP3 inflammasome, as well as IL-1β and IL-18 (p < 0.05). Western blot further revealed elevated levels of NLRP3, ASC, cleaved caspase-1 and GSDMD (p < 0.05). In the LPS+Alda-1 group, there were increased cell viability (p < 0.05), elevated ALDH2 activity (p < 0.05), and reduced levels of NLRP3 inflammasome and pyroptosis-related proteins (p < 0.05). In the CYA+LPS group, cell viability and ALDH2 activity were further declined (p < 0.05), while levels of NLRP3 /caspase-1 axis were increased (p < 0.05). ConclusionsThe activation of ALDH2 can attenuate sepsis-induced brain injury, hypothetically through regulation of the NLRP3/caspase-1 signaling pathway. Therefore, ALDH2 could potentially be considered as a new therapeutic target for the treatment of sepsis-induced brain injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call