Abstract
Optoelectronic integrated circuits (OEICs) have enhanced integration and communication capabilities in various applications. With the continued increase in complexity and scale, the need for an accurate and efficient simulation environment compatible with photonics and electronics becomes paramount. This paper introduces a method using the Verilog-A hardware language in the electronic design automation (EDA) platform to create equivalent circuit and compact models for photonic devices, considering their dispersion, polarization, multimode, and bidirectional transmission characteristics. These models can be co-simulated alongside electrical components in the electronic simulator, covering both the time and frequency domains simultaneously. Model parameters can be modified at any stage of the design process. Using the full link of an optoelectronic transceiver as an example, analyses from our Verilog-A model system show a mean absolute percentage error of 1.55% in the time-domain and 0.0318% in the frequency-domain when compared to the commercial co-simulation system (e.g., Virtuoso-INTERCONNECT). This underscores the accuracy and efficiency of our approach in OEICs design. By adopting this method, designers are enabled to conduct both electrical-specific and photonic-specific circuit analyses, as well as perform optoelectronic co-simulation within a unified platform seamlessly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.