Abstract
Abstract During fast gas-turbine engine acceleration and deceleration, the transient vibration effects in bladed disk vibration become significant and the transient response needs to be calculated. In this paper, an effective method is developed for efficient calculations of the transient vibration response for mistuned bladed disks under varying rotation speeds. The method uses the large-scale finite element modeling of the bladed disks allowing the accurate description of the dynamic properties of the mistuned bladed disks. The effects of the varying rotation speed on the natural frequencies and mode shapes of a mistuned bladed disk and its effects on the amplitude and the spectral composition of the loading are considered. The dependency of the modal characteristics on the rotation speed is based on the evaluation of these characteristics at reference points followed by the interpolation to obtain values at any rotation speed from the operating range. A new method has been developed for the interpolation of mode shapes while preserving the orthogonality and mass normalization of the mode shapes. The method of mode shape interpolation is elaborated for tuned and mistuned bladed disks. The accuracy and efficiency of the method are demonstrated on test examples and on analysis of transient forced response of realistic bladed disks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Engineering for Gas Turbines and Power
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.