Abstract

The effect of cyclic and aromatic substituents on the complexation behavior of phosphine oxide ligands with Am(III) and Eu(III) was investigated at density functional theory (DFT) and domain-based local pair natural orbital coupled-cluster (DLPNO-CC) levels. Combining DFT with accurate coupled cluster methods, we have evaluated the dispersion energy contributions to the complexation energies for trivalent Am and Eu complexes for the first time. Irrespective of the nature of substituents on the P atom, the electronic structure of the P═O group remains identical in all of the ligands. The study reveals the importance of dispersion interactions during complexation and is estimated to be more significant for Am(III) than for Eu(III) complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.